Human cytomegalovirus (HCMV) infects the majority of the global population and persists within the infected host for life; infection of healthy adults rarely leads to severe acute clinical symptoms. In contrast, HCMV is a leading infectious cause of congenital disease and a common cause of complications in transplant recipients. A vaccine to prevent HCMV disease in these populations is a widely recognized medical need. We review recent advances in our understanding of the candidate vaccine antigens and published clinical trial data for the four most recent HCMV vaccine candidates: a gB subunit adjuvanted with MF59, a DNA vaccine expressing gB and pp65, alphavirus replicon particles (VRPs) expressing gB and a pp65-IE1 fusion protein, and a pp65 peptide vaccine. The candidates are safe, although some adverse events were reported for an adjuvanted variant of the pp65 peptide vaccine. The gB/MF59 vaccine elicited strong humoral responses with limited durability. The gB/pp65 DNA vaccine elicited cellular immunity, and the pp65 peptide vaccine elicited modest cellular immunity, but only when formulated with an adjuvant. Only the VRP vaccine expressing gB and pp65-IE1 elicited both humoral and cellular immunity. The gB/MF59 vaccine showed a short-term 50% efficacy at preventing infection of seronegative women and significantly reduced viremia and need for antivirals in solid organ transplant recipients, and the gB/pp65 DNA vaccine showed signs of clinical benefit in hematopoietic stem cell transplant recipients. Importantly, the partial efficacy of the subunit and DNA vaccines is new evidence that both humoral and cellular immunity contribute to controlling HCMV-related disease. These data show the clinical feasibility of a recombinant HCMV vaccine. We discuss areas for potential improvements in the next generation of vaccine candidates.
Copyright © 2012 Elsevier Ltd. All rights reserved.