The GaN-based membrane high contrast grating (HCG) reflectors have been fabricated and investigated. The structural parameters including grating periods, grating height, filling factors and air-gap height were calculated to realize high reflectivity spectra with broad bandwidth by the rigorous coupled-wave analysis and finite-difference time-domain method. Based on the optimized simulation results, the GaN-based membrane HCGs were fabricated by e-beam lithography and focused-ion beam process. The fabricated GaN-based membrane HCG reflectors revealed high reflectivity at 460 nm band with large stopband width of 60 nm in the TE polarization measured by using the micro-reflectivity spectrometer. The experimental results also showed a good agreement with simulated ones. We believe this study will be helpful for development of the GaN-based novel light emitting devices in the blue or UV region.