S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system

Biochim Biophys Acta. 2013 Jan;1832(1):204-15. doi: 10.1016/j.bbadis.2012.09.007. Epub 2012 Sep 24.

Abstract

S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adenosylhomocysteinase / genetics
  • Adenosylhomocysteinase / metabolism*
  • Animals
  • Humans
  • Methylation
  • Models, Biological
  • S-Adenosylmethionine / metabolism*
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Saccharomyces cerevisiae Proteins
  • S-Adenosylmethionine
  • Adenosylhomocysteinase