We investigate the nonlinear response to shear stress of a colloidal hard-sphere glass, identifying several regimes depending on time, sample age, and the magnitude of applied stress. This emphasizes a connection between stress-imposed deformation of soft and hard matter, in particular, colloidal and metallic systems. A generalized Maxwell model rationalizes logarithmic creep for long times and low stresses. We identify diverging time scales approaching a critical yield stress. At intermediate times, strong aging effects are seen, which we link to a stress overshoot seen in stress-strain curves.