Objective: High-quality chest-compressions are of paramount importance for survival and good neurological outcome after cardiac arrest. However, even healthcare professionals have difficulty performing effective chest-compressions, and quality may be further reduced during transport. We compared a mechanical chest-compression device (Lund University Cardiac Assist System [LUCAS]; Jolife, Lund, Sweden) and manual chest-compressions in a simulated cardiopulmonary resuscitation scenario during helicopter rescue.
Methods: Twenty-five advanced life support-certified paramedics were enrolled for this prospective, randomized, crossover study. A modified Resusci Anne manikin was employed. Thirty minutes of training was allotted to both LUCAS and manual cardiopulmonary resuscitation (CPR). Thereafter, every candidate performed the same scenario twice, once with LUCAS and once with manual CPR. The primary outcome measure was the percentage of correct chest-compressions relative to total chest-compressions.
Results: LUCAS compared to manual chest-compressions were more frequently correct (99% vs 59%, P < .001) and were more often performed correctly regarding depth (99% vs 79%, P < .001), pressure point (100% vs 79%, P < .001) and pressure release (100% vs 97%, P = .001). Hands-off time was shorter in the LUCAS than in the manual group (46 vs 130 seconds, P < .001). Time until first defibrillation was longer in the LUCAS group (112 vs 49 seconds, P < .001).
Conclusions: During this simulated cardiac arrest scenario in helicopter rescue LUCAS compared to manual chest-compressions increased CPR quality and reduced hands-off time, but prolonged the time interval to the first defibrillation. Further clinical trials are warranted to confirm potential benefits of LUCAS CPR in helicopter rescue.
Copyright © 2013 Elsevier Inc. All rights reserved.