Graft-versus-host disease (GVHD) is a major contributor to transplant-related mortality and morbidity after allogeneic stem cell transplantation. Despite advancements in tissue-typing techniques, conditioning regimens, and therapeutic intervention, the incidence rate of GVHD remains high. GVHD is caused by alloreactive donor T cells that infiltrate and destroy host tissues (e.g., skin, liver, and gut). Therefore, GVHD is prevented and treated with therapeutics that suppress proinflammatory cytokines and T-cell function (e.g., cyclosporine, glucocorticoids). Here we report that the small molecule inhibitor of glycogen synthase kinase 3, 6-bromoindirubin 3'-oxime (BIO), prevents lethal GVHD in a humanized xenograft model in mice. BIO treatment did not affect donor T-cell engraftment, but suppressed their activation and attenuated bone marrow and liver destruction mediated by activated donor T cells. Glycogen synthase kinase 3 inhibition modulated the Th1/Th2 cytokine profile in vitro and suppressed activation of signal transducers and activators of transcription 1 and 3 signaling pathways both in vitro and in vivo. Importantly, human T cells derived from BIO-treated mice were able to mediate anti-tumor effects in vitro, and BIO did not affect stem cell engraftment and multilineage reconstitution in a mouse model of transplantation. These data demonstrate that inhibition of glycogen synthase kinase 3 can potentially abrogate GVHD without compromising the efficacy of transplantation.
Copyright © 2013 ISEH - Society for Hematology and Stem Cells. All rights reserved.