Objective: To investigate the effect and the mechanism of cyanidin-3-glucoside (C3G) in the growth inhibition of ovarian cancer in vitro and in vivo.
Method: After human ovarian cancer cell line HO-8910PM was treated with C3G, cell growth was determined by the Cell Counting Kit-8 (CCK-8) assay and apoptosis was evaluated by flow cytometry analysis stained with Annexin V-FITC/PI. The protein expression in HO-8910PM cells was analyzed by Western blot assay. HO-8910PM cells were injected subcutaneously into nude mice to establish xenograft model. After 3 weeks of implantation, mice were randomized into 2 groups (n = 8): control group, feed with 0.2 mL double distilled water; C3G group, feed with C3G at a dose of 5 mg x kg(-1). All treatment lasted for two weeks, thrice per week. Eight weeks after implantation, tumor weight and inhibition rate were evaluated respectively after the mice were sacrificed. Immunohistochemistry was used to detect the positive expression of Ki-67 and Mucin-4 in the tumors.
Result: The proliferation of ovarian cancer cells was inhibited significantly by C3G with IC50 being 13.82 mg x L(-1). Apoptosis rate induced by C3G was markedly highter than that of control. The expression of Mucin4 was down-regulated in HO-8910PM cells after treatment of C3G. C3G inhibited the growth of ovarian xenograft tumors in nude mice. Furthermore, the positive expression of Ki-67 and Mucin-4 were both decreased in tumors after administration of C3G.
Conclusion: C3G exerts anti-tumor activity in ovarian cancer both in vitro and in vivo, which may be related to down-regulation of Mucin-4 protein.