Coronary Artery Calcium (CAC) is a sign of advanced atherosclerosis and an independent risk factor for cardiac events. Here, we describe CAC-distributions in an unselected aged population and compare modelling methods to characterize CAC-distribution. CAC is difficult to model because it has a skewed and zero inflated distribution with over-dispersion. Data are from the AGES-Reykjavik sample, a large population based study [2002-2006] in Iceland of 5,764 persons aged 66-96 years. Linear regressions using logarithmic- and Box-Cox transformations on CAC+1, quantile regression and a Zero-Inflated Negative Binomial model (ZINB) were applied. Methods were compared visually and with the PRESS-statistic, R(2) and number of detected associations with concurrently measured variables. There were pronounced differences in CAC according to sex, age, history of coronary events and presence of plaque in the carotid artery. Associations with conventional coronary artery disease (CAD) risk factors varied between the sexes. The ZINB model provided the best results with respect to the PRESS-statistic, R(2), and predicted proportion of zero scores. The ZINB model detected similar numbers of associations as the linear regression on ln(CAC+1) and usually with the same risk factors.