MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

Biochem Biophys Res Commun. 2012 Oct 12;427(1):138-42. doi: 10.1016/j.bbrc.2012.09.026. Epub 2012 Sep 16.

Abstract

Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3'-untranslated region (3'UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm(2) laminar shear stress for 12h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3'UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC proliferation. These studies advance our understanding of the posttranscriptional mechanisms by which shear stress modulates endothelial homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Proliferation
  • Cells, Cultured
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Human Umbilical Vein Endothelial Cells / physiology*
  • Humans
  • MicroRNAs / biosynthesis
  • MicroRNAs / metabolism*
  • Shear Strength / physiology*
  • Stress, Mechanical*
  • TOR Serine-Threonine Kinases / biosynthesis*
  • TOR Serine-Threonine Kinases / genetics
  • Up-Regulation

Substances

  • MIRN101 microRNA, human
  • MicroRNAs
  • MTOR protein, human
  • TOR Serine-Threonine Kinases