Stable bifunctional chelates of metals used in radiotherapy

Cancer Res. 1990 Feb 1;50(3 Suppl):789s-793s.

Abstract

Monoclonal antibody technology allows the specificity of an antibody for its antigen to be used in targeting cancer cells. The conjugation of metals, particularly radionuclides such as 90Y or 67Cu, to monoclonal antibodies results in agents for radioimmunotherapy and other medical applications. Chelators that can hold radiometals with high stability under physiological conditions are essential to avoid excessive radiation damage to nontarget cells. Derivatives of polyazamacrocycles (bearing a C-substituted functional group for antibody attachment) can exhibit remarkable kinetic inertness; for example, the copper complex of the 14-membered 6-(p-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''- tetraacetic acid is very stable in human serum under physiological conditions, and a conjugate of this complex with a monoclonal antibody has tested well in tumor-bearing mice. Desreux and coworkers [Loncin, M. F., Desreux, J. F., and Merciny, E. Inorg. Chem., 25: 2646-2648, 1986] have shown that complexes of lanthanides with 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid have formation constants that are several orders of magnitude higher than that of 1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid; thus the 12-membered macrocycle is the favored target for binding trivalent yttrium. We have developed a new synthetic route to these macrocycles via peptide synthesis and intramolecular tosylamide ring closure. Incubation of the 88Y-(III) complex of 2-p-nitrobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''- tetraacetic acid for 18 days in serum results in loss of so little Y(III) from the complex (less than 0.5%) that the rate of loss cannot be measured under these conditions.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chelating Agents / metabolism*
  • Copper Radioisotopes / administration & dosage
  • Copper Radioisotopes / metabolism*
  • Cross-Linking Reagents / metabolism*
  • Drug Stability
  • Humans
  • Hydrogen-Ion Concentration
  • Yttrium Radioisotopes / administration & dosage
  • Yttrium Radioisotopes / metabolism*

Substances

  • Chelating Agents
  • Copper Radioisotopes
  • Cross-Linking Reagents
  • Yttrium Radioisotopes