Introduction: Pulsatile pump perfusion of potential kidneys for transplantation is known to decrease the rate of delayed graft function (DGF) and improve their 1-year survival. Flow and resistance parameters are often used to determine the suitability of kidneys for transplantation. Kidneys with low flow rates are often subjected to higher pressures to improve flow. This study evaluated the effect of higher pump pressures on posttransplant renal function.
Methods: We performed a retrospective analysis of 73 deceased donor kidneys preserved using pump perfusion (LifePort) at our center between May 2006 and September 2009. We calculated the mean pump pressure (MP) for the duration of perfusion of each kidney, using systolic pressure (SP) and diastolic pressure (DP) readings with the following formula: (MP = DP + 1/3 (SP - DP). The kidneys were divided into a low (LP; n = 49) and a high-pressure group (HP; n = 24) based on a MP cutoff value of 23 mm Hg. The two groups were then compared for differences in perfusion dynamics and primary endpoints including DGF and 1-year graft survival. Statistical analysis was performed using paired Student t test and chi-square analysis.
Results: The two groups were comparable for donor age, extended criteria, sensitization, and cold ischemic times. They differed significantly in higher initial (0.65 ± 0.4 versus 0.4 ± 0.2, P = .01), average (0.25 ± 0.08 versus 0.18 ± 0.06, P = .0006), and terminal resistance (0.21 ± 0.07 versus 0.17 ± 0.06, P = .008) of HP versus LP kidneys. Flow rates were comparable between the two groups. DGF was higher in HP kidneys (75% versus 40%, P = .006) with similar 1-year graft survival (87.5% versus 89%, P = .7).
Conclusions: Perfusate flow through a kidney can be improved by increasing pressure settings to overcome elevated resistance. This maneuver was not associated with a lower rate of DGF after transplantation. One-year graft survival remained unaffected.
Copyright © 2012 Elsevier Inc. All rights reserved.