Sr2Mn3Sb2O2 type oxyselenides: structures, magnetism, and electronic properties of Sr2AO2M2Se2 (A=Co, Mn; M=Cu, Ag)

Inorg Chem. 2012 Oct 1;51(19):10185-92. doi: 10.1021/ic301022g. Epub 2012 Sep 11.

Abstract

Four new oxyselenides with nominal formula Sr(2)AO(2)M(2)Se(2) (A=Co, Mn; M=Cu, Ag) have been synthesized. They all crystallize in an I4/mmm space group and consist of alternating perovskite-like (Sr(2)AO(2))(2+) blocks and antiflourie (M(2)Se(2))(2-) layers, which are relatively rare layered oxyselenides reported so far that are isostructural to Sr(2)Mn(3)Sb(2)O(2). From powder X-ray diffraction data, compounds Sr(2)CoO(2)Cu(2)Se(2) and Sr(2)CoO(2)Ag(2)Se(2) are found near stoichiometric, whereas Sr(2)MnO(2)Cu(2-δ)Se(2) and Sr(2)MnO(2)Ag(2-δ)Se(2) possess substantial copper or silver vacancies (δ≈0.5), consistent with their oxysulfide analogues. X-ray photoelectron spectroscopy measurements indicate the readily oxidization of Mn(2+) ions should be responsible for the occurrence of Cu/Ag vacancies. The rigid (Sr(2)AO(2))(2+) blocks within these compounds constrain the basal lattice parameters in the ab plane and result in largely deformed tetrahedral sites for the large silver ions. Magnetic susceptibility measurements of Sr(2)CoO(2)M(2)Se(2) (M=Cu, Ag) show complex antiferromagnetic transitions, while Sr(2)MnO(2)M(2-δ)Se(2) (M=Cu, Ag) show high-temperature Curie-Weiss behavior, followed by low-temperature antiferromagnetic transitions at 54 K and 67 K, respectively. Except for Sr(2)MnO(2)Ag(2-δ)Se(2), the other three compounds exhibit p-type semiconducting transport properties, with the measured resistivities several orders lower than their oxysulfide analogues. Hall measurement reveals high mobilities of Sr(2)CoO(2)M(2)Se(2) (M=Cu, Ag) compounds at room temperature. The unusually small optical band gaps (~0.07 eV) of Sr(2)CoO(2)Cu(2)Se(2), Sr(2)CoO(2)Ag(2)Se(2), and Sr(2)MnO(2)Cu(2-δ)Se(2) are also reported.