The development of nanoparticles containing active molecules having improved stability, sustained release and maximum half life helps in cell proliferation result in enhanced tissue regeneration. Our study focuses on the use of Gamma amino butyric acid (GABA) and serotonin (5-HT) coupled chitosan nanoparticles for the active liver regeneration in male Wistar rats. The nanoparticles were prepared and the morphology was studied using SEM. The FT-IR spectra of the nanoparticles and the maximum encapsulation efficiency of GABA and 5-HT binding to chitosan nanoparticles were observed. The in vitro release studies provided the percentage release of GABA and 5-HT from the nanoparticles at different time intervals. The quantification of DNA and protein syntheses was done using [(3)H] thymidine and [(3)H] leucine uptake studies that determined the enhancement in hepatocyte proliferation. Our results project the role of GABA and 5-HT chitosan nanoparticles in the treatment of liver based diseases.