Aims: The aim of the study was to develop an approach to enrich ionic liquid tolerant micro-organisms that efficiently decompose lignocellulose in a thermophilic and high-solids environment.
Methods and results: High-solids incubations were conducted, using compost as an inoculum source, to enrich for thermophilic communities that decompose switchgrass in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]). Ionic liquid levels were increased from 0 to 6% on a total weight basis incrementally. Successful enrichment of a community that decomposed lignocellulose at 55°C in the presence of 6% [C2mim][OAc] was achieved, when the [C2mim][OAc] level was increased stepwise from 2% to 4% to 5% to 6%. Pyrosequencing results revealed a shift in the community and a sharp decrease in richness, when thermophilic conditions were applied.
Conclusions: A community tolerant to a thermophilic, high-solids environment containing 6% [C2mim][OAc] was enriched from compost. Gradually increasing [C2mim][OAc] concentrations allowed the community to adapt to [C2mim][OAc].
Significance and impact of the study: A successful approach to enrich communities that decompose lignocellulose under thermophilic high-solids conditions in the presence of elevated levels of [C2mim][OAc] has been developed. Communities yielded from this approach will provide resources for the discovery of enzymes and metabolic pathways relevant to biomass pretreatment and fuel production.
© 2012 UC Davis.