Unstable sleep and higher sympathetic activity during late-sleep periods of rats: implication for late-sleep-related higher cardiovascular events

J Sleep Res. 2013 Feb;22(1):108-18. doi: 10.1111/j.1365-2869.2012.01046.x. Epub 2012 Sep 10.

Abstract

We proposed that the higher incidence of sleep fragmentation, sympathovagal imbalance and baroreceptor reflex impairment during quiet sleep may play a critical role in late-sleep-related cardiovascular events. Polysomnographic recording was performed through wireless transmission using freely moving Wistar-Kyoto rats over 24 h. The low-frequency power of arterial pressure variability was quantified to provide an index of vascular sympathetic activity. Spontaneous baroreflex sensitivity was assessed by slope of arterial pressure-RR linear regression. As compared with early-light period (Zeitgeber time 0-6 h), rats during the late-light period (Zeitgeber time 6-12 h) showed lower accumulated quiet sleep time and higher paradoxical sleep time; furthermore, during quiet sleep, the rats showed a lower δ% of electroencephalogram, more incidents of interruptions, higher σ% and higher β% of electroencephalogram, raised low-frequency power of arterial pressure variability value and lower baroreflex sensitivity parameters. During the light period, low-frequency power of arterial pressure variability during quiet sleep had a negative correlation with accumulated quiet sleep time and δ% of electroencephalogram, while it also had a positive correlation with σ% and β% of electroencephalogram and interruption events. However, late-sleep-related raised sympathetic activity and sleep fragmentation diminished when an α1-adrenoceptor antagonist was given to the rats. Our results suggest that the higher incidence of sleep fragmentation and sympathovagal imbalance during quiet sleep may play a critical role in late-sleep-related cardiovascular events. Such sleep fragmentation is coincident with an impairment of baroreflex sensitivity, and is mediated via α1-adernoceptors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic alpha-1 Receptor Antagonists / pharmacology
  • Adrenergic beta-1 Receptor Antagonists / pharmacology
  • Animals
  • Atenolol / pharmacology
  • Baroreflex / drug effects
  • Baroreflex / physiology*
  • Blood Pressure / drug effects
  • Blood Pressure / physiology
  • Electroencephalography
  • Male
  • Polysomnography
  • Prazosin / pharmacology
  • Rats
  • Rats, Inbred WKY
  • Sleep / drug effects
  • Sleep / physiology*
  • Sleep Deprivation / physiopathology*

Substances

  • Adrenergic alpha-1 Receptor Antagonists
  • Adrenergic beta-1 Receptor Antagonists
  • Atenolol
  • Prazosin