The discovery of α-synuclein has had profound implications concerning our understanding of Parkinson's disease (PD) and other neurodegenerative disorders characterized by α-synuclein accumulation. In fact, as compared with pre-α-synuclein times, a "new" PD can now be described as a whole-body disease in which a progressive spreading of α-synuclein pathology underlies a wide spectrum of motor as well as nonmotor clinical manifestations. Not only is α-synuclein accumulation a pathological hallmark of human α-synucleinopathies but increased protein levels are sufficient to trigger neurodegenerative processes. α-Synuclein elevations could also be a mechanism by which disease risk factors (e.g., aging) increase neuronal vulnerability to degeneration. An important corollary to the role of enhanced α-synuclein in PD pathogenesis is the possibility of developing α-synuclein-based biomarkers and new therapeutics aimed at suppressing α-synuclein expression. The use of in vitro and in vivo experimental models, including transgenic mice overexpressing α-synuclein and animals with viral vector-mediated α-synuclein transduction, has helped clarify pathogenetic mechanisms and therapeutic strategies involving α-synuclein. These models are not devoid of significant limitations, however. Therefore, further pursuit of new clues on the cause and treatment of PD in this post-α-synuclein era would benefit substantially from the development of improved research paradigms of α-synuclein elevation.