Early and persistent up-regulation of hypothalamic orexigenic peptides in rat offspring born to dams fed a high-carbohydrate supplement during gestation

Brain Res. 2012 Oct 5:1477:10-8. doi: 10.1016/j.brainres.2012.08.021. Epub 2012 Aug 17.

Abstract

Maternal diet ingested during gestation can profoundly alter production and action of hypothalamic neuropeptides involved in feeding and body weight regulation. In this study, we set out to simulate, in a rat model, modifications to feeding habit often observed in pregnant women. Gestating dams were fed a restricted normal diet with the opportunity to complete their energy requirements with either a high-fat (HF) or a high-carbohydrate (HC) diet. Growth and hypothalamic feeding peptides were measured in the offspring at 3 (weaning) and 20 weeks of age. At weaning, body weight was lower in HC pups than in HF pups or control (Ca) pups born to dams fed control diet ad libitum. Expression of neuropeptide Y (NPY) and AgRP mRNA in the arcuate nucleus were increased in HC pups vs Ca and HF pups. By 20 weeks of age, body weight differentials had disappeared, and there was no differences in NPY and AgRP gene expression, although POMC expression was lower in HC rats than in HF rats. NPY and orexin peptide concentrations in the paraventricular nucleus at this age were higher in HC rats than in Ca and HF rats. In HC rats, there was also a greater positive gradient of peptide concentration between the zone of release and the zone of synthesis for NPY and orexin. The early up-regulation of orexigenic peptides in HC rats may be a compensatory adjustment to low body weight. This persisting overactive orexigenic drive might have deleterious metabolic effects in an obesogenic environment at adulthood.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Agouti-Related Protein / genetics
  • Agouti-Related Protein / metabolism
  • Animals
  • Animals, Newborn
  • Body Weight / physiology
  • Dietary Carbohydrates / adverse effects*
  • Female
  • Hypothalamus
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Male
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Neuropeptide Y / genetics
  • Neuropeptide Y / metabolism
  • Neuropeptides / genetics
  • Neuropeptides / metabolism*
  • Orexins
  • Pregnancy
  • Prenatal Exposure Delayed Effects / etiology*
  • Prenatal Exposure Delayed Effects / pathology*
  • Pro-Opiomelanocortin / genetics
  • Pro-Opiomelanocortin / metabolism
  • RNA, Messenger / metabolism
  • Rats
  • Rats, Long-Evans
  • Up-Regulation / physiology*

Substances

  • AGRP protein, rat
  • Agouti-Related Protein
  • Dietary Carbohydrates
  • Intracellular Signaling Peptides and Proteins
  • Nerve Tissue Proteins
  • Neuropeptide Y
  • Neuropeptides
  • Orexins
  • RNA, Messenger
  • cocaine- and amphetamine-regulated transcript protein
  • Pro-Opiomelanocortin