Noninvasive or minimally invasive imaging techniques are essential for developing strategies and assessing outcomes of cell-based therapies for myocardial regeneration, also referred to as cellular cardiomyoplasty. Imaging-based monitoring of cell survival is useful for selection of optimal cell type and evaluating strategies to enhance engraftment. Imaging-derived surrogate end points including global and regional contractile function, myocardial blood flow, or perfusion and bioenergetics have been used in clinical trials or in relevant large animal models to evaluate the therapeutic effect and mechanisms of action of cellular cardiomyoplasty. New techniques are emerging to assess electrical integration of donor cells with host cardiomyocytes. This review will summarize and highlight important and informative findings revealed by imaging in clinical and preclinical cellular cardiomyoplasty studies over the past 3 years.