Spin dynamics and relaxation in graphene nanoribbons: electron spin resonance probing

ACS Nano. 2012 Sep 25;6(9):7615-23. doi: 10.1021/nn302745x. Epub 2012 Aug 28.

Abstract

Here we report the results of a multifrequency (~9, 20, 34, 239.2, and 336 GHz) variable-temperature continuous wave (cw) and X-band (~9 GHz) pulse electron spin resonance (ESR) measurement performed at cryogenic temperatures on potassium split graphene nanoribbons (GNRs). Important experimental findings include the following: (a) The multifrequency cw ESR data infer the presence of only carbon-related paramagnetic nonbonding states, at any measured temperature, with the g value independent of microwave frequency and temperature. (b) A linear broadening of the ESR signal as a function of microwave frequency is noticed. The observed linear frequency dependence of ESR signal width points to a distribution of g factors causing the non-Lorentzian line shape, and the g broadening contribution is found to be very small. (c) The ESR process is found to be characterized by slow and fast components, whose temperature dependences could be well described by a tunneling level state model. This work not only could help in advancing the present fundamental understanding on the edge spin (or magnetic)-based properties of GNRs but also pave the way to GNR-based spin devices.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Electron Spin Resonance Spectroscopy / methods*
  • Graphite / chemistry*
  • Materials Testing
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Spin Labels

Substances

  • Spin Labels
  • Graphite