We report on the use of new biofunctionalized gold nanoparticles (bio-AuNPs) that enable a surface plasmon resonance (SPR) biosensor to detect low levels of carcinoembryonic antigen (CEA) in human blood plasma. Bio-AuNPs consist of gold nanoparticles functionalized both with (1) streptavidin, to provide high affinity for the biotinylated secondary antibody used in the second step of the CEA sandwich assay, and with (2) bovine serum albumin, to minimize the nonspecific interaction of the bio-AuNPs with complex samples (blood plasma). We demonstrate that this approach makes it possible for the SPR biosensor to detect CEA in blood plasma at concentrations as low as 0.1 ng/mL, well below normal physiological levels (approximately nanograms per milliliter). Moreover, the limit of detection achieved using this approach is better by a factor of more than 1,000 than limits of detection reported so far for CEA in blood plasma using SPR biosensors.