Objective: Noninvasive imaging of atherosclerosis remains challenging in clinical applications. Here, we applied noninvasive molecular imaging to detect vascular cell adhesion molecule-1 in early and advanced atherosclerotic lesions of apolipoprotein E-deficient mice.
Methods and results: Ultrasmall superparamagnetic iron oxide particles functionalized with (P03011) or without (P3007) vascular cell adhesion molecule-1-binding peptide were visualized by ultra high-field (17.6 T) magnetic resonance. Injection of P03011 resulted in a marked signal loss in the aortic root of apolipoprotein E-deficient mice fed a Western diet for 8 and 26 weeks in vivo and ex vivo, compared with preinjection measurements, P3007-injected mice, and P03011- or P3007-injected age-matched C57BL/6 controls. Histological analyses revealed iron accumulations in the intima, in colocalization with vascular cell adhesion molecule-1-expressing macrophages and endothelial cells. Coherent anti-Stokes Raman scattering microscopy demonstrated iron signals in the intima and media of the aortic root in the P03011-injected but not untreated apolipoprotein E-deficient mice, localized to macrophages, luminal endothelial-like cells, and medial regions containing smooth muscle cells. Electron microscopy confirmed iron particles enclosed in endothelial cells and in the vicinity of smooth muscle cells.
Conclusions: Using a combination of innovative imaging modalities, in this study, we demonstrate the feasibility of applying P03011 as a contrast agent for imaging of atherosclerosis.