The morphological and inflammatory responses of adherent macrophages are correlated to evaluate the biocompatibility of surfaces. Monocyte-derived macrophage (MDM), THP-1, and THP-1 cells expressing GFP-actin chimeric protein were seeded onto glass, polyurethane (PU), and glass surface modified with quaternary ammonium salt functionalized chitosan (CH-Q) and hyaluronic acid (HA). Using confocal microscopy, the surface area, volume and 3D shape factor of adherent macrophages was quantified. For comparison, functional consequences of cell-surface interactions that activate macrophages and thereby elicit secretion of a proinflammatory cytokine were evaluated. Using an enzyme linked immune sorbent assay, tumor necrosis factor-alpha (TNF-α) was measured. On glass, macrophages exhibited mainly an amoeboid shape, exhibited the largest surface area, volume, and 3D shape factor and produced the most TNF-α. On PU, macrophages displayed mainly a hemispherical shape, exhibited an intermediate volume, surface area and 3D shape factor, and produced moderate TNF-α. In contrast, on CH-Q and HA surfaces, macrophages were spherical, exhibited the smallest volume, surface area, and 3D shape factor, and produced the least TNF-α. These studies begin to validate the use of GFP-actin-modified MDM as a novel tool to correlate cell morphology with inflammatory cell response.
Copyright © 2012 Wiley Periodicals, Inc.