Porphyrin-phospholipid conjugates were used to create photonic microbubbles (MBs) having a porphyrin shell ("porshe"), and their acoustic and photoacoustic properties were investigated. The inclusion of porphyrin-lipid in the MB shell increased the yield, improved the serum stability, and generated a narrow volumetric size distribution with a peak size of 2.7 ± 0.2 μm. Using an acoustic model, we calculated the porshe stiffness to be 3-5 times greater than that of commercial lipid MBs. Porshe MBs were found to be intrinsically suitable for both ultrasound and photoacoustic imaging with a resonance frequency of 9-10 MHz. The distinctive properties of porshe MBs make them potentially advantageous for a broad range of biomedical imaging and therapeutic applications.