Expression and purification of coronavirus envelope proteins using a modified β-barrel construct

Protein Expr Purif. 2012 Sep;85(1):133-41. doi: 10.1016/j.pep.2012.07.005. Epub 2012 Jul 20.

Abstract

Coronavirus envelope (E) proteins are short (~100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions. Although an NMR-based model for the TM domain of the E protein in the severe acute respiratory syndrome virus (SARS-CoV E) has been reported, structural data and biophysical studies of full length E proteins are not available because efficient expression and purification methods for these proteins are lacking. Herein we have used a novel fusion protein consisting of a modified β-barrel to purify both wild type and cysteine-less mutants of two representatives of coronavirus E proteins: the shortest (76 residues), from SARS-CoV E, and one of the longest (109 residues), from the infectious bronchitis virus (IBV E). The fusion construct was subsequently cleaved with cyanogen bromide and all polypeptides were obtained with high purity. This is an approach that can be used in other difficult hydrophobic peptides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Circular Dichroism
  • Cloning, Molecular
  • Electrophoresis, Polyacrylamide Gel
  • Escherichia coli / genetics
  • Lipid Bilayers / chemistry
  • Molecular Sequence Data
  • Mutation
  • Protein Multimerization
  • Protein Structure, Secondary
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / isolation & purification
  • Severe Acute Respiratory Syndrome / virology
  • Severe acute respiratory syndrome-related coronavirus / chemistry
  • Severe acute respiratory syndrome-related coronavirus / genetics*
  • Ultracentrifugation
  • Up-Regulation
  • Viral Envelope Proteins / chemistry
  • Viral Envelope Proteins / genetics*
  • Viral Envelope Proteins / isolation & purification*

Substances

  • Lipid Bilayers
  • Recombinant Fusion Proteins
  • Viral Envelope Proteins