Two-dimensional boron monolayer sheets

ACS Nano. 2012 Aug 28;6(8):7443-53. doi: 10.1021/nn302696v. Epub 2012 Jul 20.

Abstract

Boron, a nearest-neighbor of carbon, is possibly the second element that can possess free-standing flat monolayer structures, evidenced by recent successful synthesis of single-walled and multiwalled boron nanotubes (MWBNTs). From an extensive structural search using the first-principles particle-swarm optimization (PSO) global algorithm, two boron monolayers (α(1)- and β(1)-sheet) are predicted to be the most stable α- and β-types of boron sheets, respectively. Both boron sheets possess greater cohesive energies than the state-of-the-art two-dimensional boron structures (by more than 60 meV/atom based on density functional theory calculation using PBE0 hybrid functional), that is, the α-sheet previously predicted by Tang and Ismail-Beigi and the g(1/8)- and g(2/15)-sheets (both belonging to the β-type) recently reported by Yakobson and co-workers. Moreover, the PBE0 calculation predicts that the α-sheet is a semiconductor, while the α(1)-, β(1)-, g(1/8)-, and g(2/15)-sheets are all metals. When two α(1) monolayers are stacked on top each other, the bilayer α(1)-sheet remains flat with an optimal interlayer distance of ~3.62 Å, which is close to the measured interlayer distance (~3.2 Å) in MWBNTs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Boron / chemistry*
  • Computer Simulation
  • Macromolecular Substances / chemistry
  • Membranes, Artificial*
  • Models, Chemical*
  • Models, Molecular*
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances
  • Membranes, Artificial
  • Boron