Dietary methyl donors and their genetic determinants are associated with Crohn's disease risk. We investigated whether a methyl-deficient diet (MDD) may affect development and functions of the small intestine in rat pups from dams subjected to the MDD during gestation and lactation. At 1 month before pregnancy, adult females were fed with either a standard food or a diet without vitamin B12, folate and choline. A global wall hypotrophy was observed in the distal small bowel (MDD animals 0·30 mm v. controls 0·58 mm; P< 0·001) with increased crypt apoptosis (3·37 v. 0·4%; P< 0·001), loss of enterocyte differentiation in the villus and a reduction in intestinal alkaline phosphatase production. Cleaved caspase-3 immunostaining (MDD animals 3·37% v. controls 0·4%, P< 0·001) and the Apostain labelling index showed increased crypt apoptosis (3·5 v. 1·4%; P= 0·018). Decreased proliferation was observed in crypts of the proximal small bowel with a reduced number of minichromosome maintenance 6 (MDD animals 52·83% v. controls 83·17%; P= 0·048) and proliferating cell nuclear antigen-positive cells (46·25 v. 59 %; P= 0·05). This lack of enterocyte differentiation in the distal small bowel was associated with an impaired expression of β-catenin and a decreased β-catenin-E-cadherin interaction. The MDD affected the intestinal barrier in the proximal small bowel by decreasing Paneth cell number after immunostaining for lysosyme (MDD animals 8·66% v. controls 21·66%) and by reducing goblet cell number and mucus production after immunostaining for mucin-2 (crypts 8·66 v. 15·33%; villus 7 v. 17%). The MDD has dual effects on the small intestine by producing dramatic effects on enterocyte differentiation and barrier function in rats.