Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels

Biomaterials. 2012 Oct;33(28):6682-90. doi: 10.1016/j.biomaterials.2012.06.005. Epub 2012 Jun 30.

Abstract

Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H(A0)), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E(ten)) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H(A0) (0.01-2.46 MPa) and E(ten) (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 × 10(-15) to 8.5 × 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H(A0) and E(ten) were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical properties of articular cartilage.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Biomechanical Phenomena
  • Cartilage, Articular / chemistry*
  • Elastic Modulus
  • Hydrogels / chemistry*
  • Molecular Weight
  • Polyethylene Glycols / chemistry*
  • Stress, Mechanical
  • Tensile Strength
  • Tissue Engineering*

Substances

  • Hydrogels
  • poly(ethylene glycol)diacrylate
  • Polyethylene Glycols