Block copolymer nanoparticles having two different hydrodynamic diameters (120 nm vs 50 nm) and core diameters (60 nm vs 20 nm) with variable paclitaxel loading (5 to 20 wt % with respect to polymer weight, 4.4 μg/mL to 21.7 μg/mL paclitaxel concentrations in ultrapure water) were prepared for their in vitro cytotoxicity evaluation. Empty nanoparticles did not show any inherent cytotoxicity even at their highest concentration, whereas paclitaxel-loaded nanoparticles resulted in IC50 values that were better than free paclitaxel at 2 h (0.021 μM vs 0.046 μM) incubation periods, and approximately equal to free paclitaxel at 72 h (0.004 μM vs 0.003 μM) continuous incubation. Confocal fluorescence microscopy images demonstrated that the drug-loaded nanoparticles internalized into KB cells within 2 h and released their payload, resulting in cytotoxicity as evident from the fragmented nuclei present. Functionalization of the nanoparticle surfaces with poly(ethylene oxide) (2 kDa PEO, 5 PEO per block copolymer chain) did not affect the loading of paclitaxel or cell kill ability. No free paclitaxel was found in these nanoparticle formulations indicated by analytical assays.