Radiotherapy is a crucial treatment for cervical cancer, the second most common type of cancer in women worldwide. In this study, we investigated the effects of CXC chemokine ligand 10 (CXCL10) gene therapy combined with radiotherapy on cervical cancer using HeLa cells. TUNEL assay revealed that the apoptotic rate in the combined treatment of CXCL10 gene therapy and radiotherapy was greatly increased compared with that of CXCL10 or radiotherapy alone. Flow cytometry showed that CXCL10 overexpression in HeLa cells resulted in a prolonged G1 phase and shortened S phase at 72 h post-transfection. Western blot analysis revealed that p27(Kip1) was up-regulated in CXCL10-treated HeLa cells; however, cyclin E was down-regulated. These results indicate that the combination of CXCL10 gene therapy and radiotherapy is an effective strategy for the growth suppression of HeLa cells, and that CXCL10 enhances the radiotherapy effects through cell cycle redistribution. Our data provide new insight into the treatment of cervical carcinoma, involving an effective combination of gene therapy and radiotherapy against tumors.