Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually

Hum Brain Mapp. 2013 Dec;34(12):3280-98. doi: 10.1002/hbm.22140. Epub 2012 Jun 27.

Abstract

A better understanding of how behavioral performance emerges from interacting brain systems may come from analysis of functional networks using functional magnetic resonance imaging. Recent studies comparing such networks with human behavior have begun to identify these relationships, but few have used a time scale small enough to relate their findings to variation within a single individual's behavior. In the present experiment we examined the relationship between a psychomotor vigilance task and the interacting default mode and task positive networks. Two time-localized comparative metrics were calculated: difference between the two networks' signals at various time points around each instance of the stimulus (peristimulus times) and correlation within a 12.3-s window centered at each peristimulus time. Correlation between networks was also calculated within entire resting-state functional imaging runs from the same individuals. These metrics were compared with response speed on both an intraindividual and an interindividual basis. In most cases, a greater difference or more anticorrelation between networks was significantly related to faster performance. While interindividual analysis showed this result generally, using intraindividual analysis it was isolated to peristimulus times 4 to 8 s before the detected target. Within that peristimulus time span, the effect was stronger for individuals who tended to have faster response times. These results suggest that the relationship between functional networks and behavior can be better understood by using shorter time windows and also by considering both intraindividual and interindividual variability.

Keywords: default mode; functional connectivity; large scale cerebral networks; performance prediction; psychomotor vigilance task; pvt; resting state; spontaneous fluctuations; task positive; windowed correlation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Attention / physiology*
  • Brain / blood supply
  • Brain / physiology*
  • Brain Mapping*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Individuality
  • Magnetic Resonance Imaging
  • Male
  • Models, Statistical
  • Nerve Net / blood supply
  • Nerve Net / physiology*
  • Predictive Value of Tests
  • Reaction Time / physiology*
  • Rest
  • Time Factors
  • Young Adult