Synthesis of S-doped graphene by liquid precursor

Nanotechnology. 2012 Jul 11;23(27):275605. doi: 10.1088/0957-4484/23/27/275605. Epub 2012 Jun 19.

Abstract

Doping is a common and effective approach to tailor semiconductor properties. Here, we demonstrate the growth of large-area sulfur (S)-doped graphene sheets on copper substrate via the chemical vapor deposition technique by using liquid organics (hexane in the presence of S) as the precursor. We found that S could be doped into graphene's lattice and mainly formed linear nanodomains, which was proved by elemental analysis, high resolution transmission microscopy and Raman spectra. Measurements on S-doped graphene field-effect transistors (G-FETs) revealed that S-doped graphene exhibited lower conductivity and distinctive p-type semiconductor properties compared with those of pristine graphene. Our approach has produced a new member in the family of graphene based materials and is promising for producing graphene based devices for multiple applications.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallization / methods*
  • Electric Conductivity
  • Graphite / chemistry*
  • Hexanes / chemistry*
  • Materials Testing
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Semiconductors*
  • Solutions
  • Surface Properties

Substances

  • Hexanes
  • Solutions
  • Graphite