Head and neck cancer is a devastating disease that afflicts many individuals worldwide. Conventional therapies are successful in only a limited subgroup and often leave the patient with disfigurement and long lasting adverse effects on normal physiologic functions. The field is in dire need of new therapies. Oncolytic viral as well as targeted therapies have shown some success in other malignancies and are attractive for the treatment of head and neck cancer. Recently, it has been shown that a subset of head and neck cancers is human papillomavirus (HPV) positive and that this subset of cancers is biologically distinct and more sensitive to chemoradiation therapies although the underlying mechanism is unclear. However, chemoresistance remains a general problem. One candidate mediator of therapeutic response, which is of interest for the targeting of both HPV-positive and -negative tumors is the human DEK proto-oncogene. DEK is upregulated in numerous tumors including head and neck cancers regardless of their HPV status. Depletion of DEK in tumor cells in culture results in sensitivity to genotoxic agents, particularly in rapidly proliferating cells. This suggests that tumors with high DEK protein expression may be correlated with poor clinical response to clastogenic therapies. Targeting molecules such as DEK in combination with new and/or conventional therapies, holds promise for novel future therapeutics for head and neck cancer.
Copyright © 2012 Mosby, Inc. All rights reserved.