Bilateral mammographic density asymmetry and breast cancer risk: a preliminary assessment

Eur J Radiol. 2012 Nov;81(11):3222-8. doi: 10.1016/j.ejrad.2012.04.018. Epub 2012 May 12.

Abstract

To improve efficacy of breast cancer screening and prevention programs, it requires a risk assessment model with high discriminatory power. This study aimed to assess classification performance of using computed bilateral mammographic density asymmetry to predict risk of individual women developing breast cancer in near-term. The database includes 451 cases with multiple screening mammography examinations. The first (baseline) examinations of all case were interpreted negative. In the next sequential examinations, 187 cases developed cancer or surgically excised high-risk lesions, 155 remained negative (not-recalled), and 109 were recalled benign cases. From each of two bilateral cranio-caudal view images acquired from the baseline examination, we computed two features of average pixel value and local pixel value fluctuation. We then computed mean and difference of each feature computed from two images. When applying the computed features and other two risk factors (woman's age and subjectively rated mammographic density) to predict risk of cancer development, areas under receiver operating characteristic curves (AUC) were computed to evaluate the discriminatory/classification performance. The AUCs are 0.633±0.030, 0.535±0.036, 0.567±0.031, and 0.719±0.027 when using woman's age, subjectively rated, computed mean and asymmetry of mammographic density, to classify between two groups of cancer-verified and negative cases, respectively. When using an equal-weighted fusion method to combine woman's age and computed density asymmetry, AUC increased to 0.761±0.025 (p<0.05). The study demonstrated that bilateral mammographic density asymmetry could be a significantly stronger risk factor associated to the risk of women developing breast cancer in near-term than woman's age and assessed mean mammographic density.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms / diagnostic imaging*
  • Breast Neoplasms / epidemiology*
  • Densitometry / statistics & numerical data*
  • Female
  • Humans
  • Incidence
  • Mass Screening / statistics & numerical data*
  • Middle Aged
  • Pennsylvania / epidemiology
  • Pilot Projects
  • Reproducibility of Results
  • Risk Assessment
  • Sensitivity and Specificity
  • Ultrasonography, Mammary / statistics & numerical data*