Features and technical applications of ω-transaminases

Appl Microbiol Biotechnol. 2012 Jun;94(5):1163-71. doi: 10.1007/s00253-012-4103-3. Epub 2012 May 4.

Abstract

Chiral amines in enantiopure forms are important chemical building blocks, which are most well recognized in the pharmaceutical industries for imparting desirable biological activity to chemical entities. A number of synthetic strategies to produce chiral amines via biocatalytic as well as chemical transformation have been developed. Recently, ω-transaminase (ω-TA) has attracted growing attention as a promising catalyst which provides an environment-friendly access to production of chiral amines with exquisite stereoselectivity and excellent catalytic turnover. To obtain enantiopure amines using ω-TAs, either kinetic resolution of racemic amines or asymmetric amination of achiral ketones is employed. The latter is usually preferred because of twofold higher yield and no requirement of conversion of a ketone product back to racemic amine. However, the choice of a production process depends on several factors such as reaction equilibrium, substrate reactivity, enzyme inhibition, and commercial availability of substrates. This review summarizes the biochemical features of ω-TA, including reaction chemistry, substrate specificity, and active site structure, and then introduces recent advances in expanding the scope of ω-TA reaction by protein engineering and public database searching. We also address crucial factors to be considered for the development of efficient ω-TA processes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biogenic Amines / metabolism*
  • Biotechnology / methods*
  • Catalytic Domain
  • Models, Chemical
  • Models, Molecular
  • Technology, Pharmaceutical / methods*
  • Transaminases / chemistry
  • Transaminases / metabolism*

Substances

  • Biogenic Amines
  • Transaminases