Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces

Nat Mater. 2012 Apr 29;11(6):530-5. doi: 10.1038/nmat3307.

Abstract

Electrochemical equilibrium and the transfer of mass and charge through interfaces at the atomic scale are of fundamental importance for the microscopic understanding of elementary physicochemical processes. Approaching atomic dimensions, phase instabilities and instrumentation limits restrict the resolution. Here we show an ultimate lateral, mass and charge resolution during electrochemical Ag phase formation at the surface of RbAg(4)I(5) superionic conductor thin films. We found that a small amount of electron donors in the solid electrolyte enables scanning tunnelling microscope measurements and atomically resolved imaging. We demonstrate that Ag critical nucleus formation is rate limiting. The Gibbs energy of this process takes discrete values and the number of atoms of the critical nucleus remains constant over a large range of applied potentials. Our approach is crucial to elucidate the mechanism of atomic switches and highlights the possibility of extending this method to a variety of other electrochemical systems.