Only one of the four lepidoptera-specific crystal protein subclasses (CryIC) Bacillus thuringiensis was previously shown to be highly toxic against several Spodoptera species. By using a cryIC-derived nucleotide probe, DNA from 25 different strains of B. thuringiensis was screened for the presence of homologous sequences. A putative crystal protein gene, considerably different from the cryIC gene subclass, was identified in the DNA of strain 4F1 (serotype kenyae) and cloned in Escherichia coli. Its nucleotide sequence was determined and appeared to contain several features typical for a crystal protein gene. Furthermore, the region coding for the N-terminal part of the putative toxic fragment showed extensive homology to subclass cryIA sequences derived from gene BtII, whereas the region coding for the C-terminal part appeared to be highly homologous to the cryIC gene BtVI. With an anti-crystal protein antiserum, a polypeptide of the expected size could be demonstrated in Western immunoblots, onto which a lysate of E. coli cells harboring the putative gene, now designated as BtXI, had been transferred. Cells expressing the gene appeared to be equally toxic against larvae of Spodoptera exigua as recombinant cells expressing the BtVI (cryIC)-encoded crystal protein. However, no toxicity against larvae of Heliothis virescens, Mamestra brassicae, or Pieris brassicae could be demonstrated. The nucleotide sequence analysis and the toxicity studies showed that this novel crystal protein gene falls into a new cryl gene subclass. We propose that this subclass be referred to as cryIE.