Correct tissue architecture is essential for normal physiology, yet there have been few attempts to recreate tissues using micro-patterning. We have used polymer brush micro-engineering to generate a stratified micro-epidermis with fewer than 10 human keratinocytes. Epidermal stem cells are captured on 100 μm diameter circular collagen-coated disks. Within 24 h they assemble a stratified micro-tissue, in which differentiated cells have a central suprabasal location. For rings with a non-adhesive centre of up to 40 μm diameter, cell-cell and cell-matrix adhesive interactions together result in correct micro-epidermis assembly. Assembly requires actin polymerization, adherens junctions and desmosomes, but not myosin II-mediated contractility nor coordinated cell movement. Squamous cell carcinoma cells on micro-patterned rings exhibit disturbed architecture that correlates with the characteristics of the original tumours. The micro-epidermis we have generated provides a new platform for screening drugs that modulate tissue assembly, quantifying tissue stratification and investigating the properties of tumour cells.
Copyright © 2012 Elsevier Ltd. All rights reserved.