Background: Optimizing a closed-loop insulin delivery algorithm for individuals with type 1 diabetes can be potentially facilitated by a mathematical model of the patient. However, model simulation studies that evaluate changes to the control algorithm need to produce conclusions similar to those that would be obtained from a clinical study evaluating the same modification. We evaluated the ability of a low-order identifiable virtual patient (IVP) model to achieve this goal.
Methods: Ten adult subjects (42.5 ± 11.5 years of age; 18.0 ± 13.5 years diabetes; 6.9 ± 0.8% hemoglobin A1c) previously characterized with the IVP model were studied following the procedures independently reported in a pediatric study assessing proportional-integral-derivative control with and without a 50% meal insulin bolus. Peak postprandial glucose levels with and without the meal bolus and use of supplemental carbohydrate to treat hypoglycemia were compared using two-way analysis of variance and chi-square tests, respectively.
Results: The meal bolus decreased the peak postprandial glucose levels in both the adult-simulation and pediatricclinical study (231 ± 38 standard deviation to 205 ± 33 mg/dl and 226 ± 51 to 194 ± 47 mg/dl, respectively; p = .0472). No differences were observed between the peak postprandial levels obtained in the two studies (clinical and simulation study not different, p = .57; interaction p = .83) or in the use of supplemental carbohydrate (3 occurrences in 17 patient days of closed-loop control in the clinical-pediatric study; 7 occurrences over 20 patient days in the adult-simulation study, p = .29).
Conclusions: Closed-loop simulations using an IVP model can predict clinical study outcomes in patients studied independently from those used to develop the model.
© 2012 Diabetes Technology Society.