A redox-switchable Au8-cluster sensor

Small. 2012 Jul 9;8(13):2099-105. doi: 10.1002/smll.201102742. Epub 2012 Apr 17.

Abstract

The proof of concept of a simple sensing platform based on the fluorescence of a gold cluster consisting of eight atoms, which is easily manipulated by reduction and oxidation of a specific molecule in the absence of chemical linkers, is demonstrated. Without using any coupling reagents to arrange the distance of the donor-acceptor pair, the fluorescence of the Au(8) -cluster is immediately switched off in the presence of 2-pyridinethiol (2-PyT) quencher. Through an upward-curving Stern-Volmer plot, the system shows complex fluorescence quenching with a combination of static and dynamic quenching processes. To analyze the static quenching constant (V) by a "sphere of action" model, the collisional encounter between the Au(8) -cluster and 2-PyT presents a quenching radius (r) ≈5.8 nm, which is larger than the sum of the radii of the Au(8) -cluster and 2-PyT. This implies that fluorescence quenching can occur even though the Au(8) -cluster and 2-PyT are not very close to each other. The quenching pathway may be derived from a photoinduced electron-transfer process of the encounter pair between the Au(8) -cluster (as an electron donor) and 2-PyT (as an electron acceptor) to allow efficient fluorescence quenching in the absence of coupling reagents. Interestingly, the fluorescence is restored by oxidation of 2-PyT to form the corresponding disulfide compound and then quenched again after the reduction of the disulfide. This redox-switchable fluorescent Au(8) -cluster platform is a novel discovery, and its utility as a promising sensor for detecting H(2) O(2) -generating enzymatic transformations is demonstrated.

Publication types

  • Research Support, Non-U.S. Gov't