Genes involved in systemic and arterial bed dependent atherosclerosis--Tampere Vascular study

PLoS One. 2012;7(4):e33787. doi: 10.1371/journal.pone.0033787. Epub 2012 Apr 11.

Abstract

Background: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed.

Methodology/principal findings: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25).

Conclusions: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Arteries / metabolism
  • Arteries / pathology*
  • Arteries / physiopathology
  • Case-Control Studies
  • Female
  • Finland
  • Gene Expression Profiling*
  • Genomics
  • Humans
  • Male
  • Organ Specificity
  • Plaque, Atherosclerotic / genetics*
  • Plaque, Atherosclerotic / pathology
  • Plaque, Atherosclerotic / physiopathology