Human color constancy has been studied for over 100 years, and there is extensive experimental data for the case where a spatially diffuse light source illuminates a set of flat matte surfaces. In natural viewing, however, three-dimensional objects are viewed in three-dimensional scenes. Little is known about color constancy for three-dimensional objects. We used a forced-choice task to measure the achromatic chromaticity of matte disks, matte spheres, and glossy spheres. In all cases, the test stimuli were viewed in the context of stereoscopically viewed graphics simulations of three-dimensional scenes, and we varied the scene illuminant. We studied conditions both where all cues were consistent with the simulated illuminant change (consistent-cue conditions) and where local contrast was silenced as a cue (reduced-cue conditions). We computed constancy indices from the achromatic chromaticities. To first order, constancy was similar for the three test object types. There was, however, a reliable interaction between test object type and cue condition. In the consistent-cue conditions, constancy tended to be best for the matte disks, while in the reduced-cue conditions constancy was best for the spheres. The presence of this interaction presents an important challenge for theorists who seek to generalize models that account for constancy for flat tests to the more general case of three-dimensional objects.