Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy

ACS Nano. 2012 May 22;6(5):4072-82. doi: 10.1021/nn3004668. Epub 2012 Apr 22.

Abstract

We present a strategy to achieve heterogeneous seeded growth on nanoparticle (NP) surfaces and construct various Pt nanostructures (cage- and ring-like) by using selective etching as surface-free-energy-distribution modifier. Preprepared Au polyhedron NPs (octahedron, decahedron, nanorod, and nanoplate) are mixed with KI, H(2)PtCl(6), and surfactant. Under heating, KI is first oxidized to I(2), which then selectively etches the edges of Au polyhedrons. Consequently, the partial removal of surface Au atoms creates highly active sites (exposed high-index facets, atom steps, and kinks) on the etched edges. Then the reduced Pt(0) atoms deposit on the etched edges preferentially and grow further, generating bimetallic nanostructures, Au octahedrons, or decahedrons with edges coated by Pt. The Pt layer protects the Au on the etched edges against further etching, changing the etching route and causing the Au on {111} facets without a Pt layer to be etched. After the Au is removed completely from the bimetallic nanostructures, ring-like, frame-like, and octahedral cage-like Pt nanostructures form. The evolution from Au polyhedrons to Pt ring or octahedron cage is investigated systematically by high-resolution transmission electron microscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray, scanning transmission electron microscopy, and high-angle annular dark field.