The TonB system of proteins is required for the energy-dependent active transport of iron-bound substrates across the outer membrane of gram-negative bacteria. We have identified three TonB systems within the human pathogen Vibrio vulnificus. The TonB1 system contains the TonB1, ExbD1, and ExbB1 proteins, whereas both the TtpC2-TonB2 and TtpC3-TonB3 systems contain an additional fourth protein, TtpC. Here we report that TtpC3, although highly related to TtpC2, is inactive in iron transport, whereas TtpC2 is essential for the function of the TtpC2-TonB2 system in V. vulnificus. This protein, together with TonB2, is absolutely required for both the uptake of endogenously produced iron-bound siderophores as well as siderophores produced from other organisms. Through complementation we show that V. vulnificus is capable of using different TtpC2 proteins from other Vibrio species to drive the uptake of multiple siderophores. We have also determined that aerobactin, a common bacterial siderophore involved in virulence of enteric bacteria, can only be brought into the cell using the TtpC2-TonB2 system, indicating an important evolutionary adaptation of TtpC2 and TonB2. Furthermore, in the absence of TonB1, TtpC2 is essential for a fully virulent phenotype as demonstrated using 50% lethal dose (LD(50)) experiments in mice.