Background and purpose: Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid-based 'dual inhibitor' of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH.
Experimental approach: Rats were treated daily with testosterone propionate (3 mg·kg(-1) s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg(-1) , i.p.) or flavocoxid (20 mg·kg(-1) , i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells.
Key results: Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE(2) and leukotriene B(4) (LTB(4) ), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth.
Conclusion and implications: Our results show that a 'dual inhibitor' of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism.
© 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.