Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces

Biomacromolecules. 2012 Apr 9;13(4):1100-5. doi: 10.1021/bm201847n. Epub 2012 Mar 28.

Abstract

Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Fibroblasts / chemistry*
  • Mice
  • NIH 3T3 Cells
  • Nylons / chemistry*
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Surface Properties

Substances

  • Nylons
  • Polymers