In addition to many important roles for Cdk5 in brain development and synaptic function, we reported previously that Cdk5 regulates inflammatory pain signaling, partly through phosphorylation of transient receptor potential vanilloid 1 (TRPV1), an important Na(+)/Ca(2+) channel expressed in primary nociceptive afferent nerves. Because TGF-β regulates inflammatory processes and its receptor is expressed in TRPV1-positive afferents, we studied the cross-talk between these two pathways in sensory neurons during experimental peripheral inflammation. We demonstrate that TGF-β1 increases transcription and protein levels of the Cdk5 co-activator p35 through ERK1/2, resulting in an increase in Cdk5 activity in rat B104 neuroblastoma cells. Additionally, TGF-β1 enhances the capsaicin-induced Ca(2+) influx in cultured primary neurons from dorsal root ganglia (DRG). Importantly, Cdk5 activity was reduced in the trigeminal ganglia and DRG of 14-day-old TGF-β1 knock-out mice, resulting in reduced Cdk5-dependent phosphorylation of TRPV1. The decreased Cdk5 activity is associated with attenuated thermal hyperalgesia in TGF-β1 receptor conditional knock-out mice, where TGF-β signaling is significantly reduced in trigeminal ganglia and DRG. Collectively, our results indicate that active cross-talk between the TGF-β and Cdk5 pathways contributes to inflammatory pain signaling.