NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise

Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E308-21. doi: 10.1152/ajpendo.00054.2012. Epub 2012 Mar 20.

Abstract

The pyridine nucleotides, NAD(+) and NADH, are coenzymes that provide oxidoreductive power for the generation of ATP by mitochondria. In skeletal muscle, exercise perturbs the levels of NAD(+), NADH, and consequently, the NAD(+)/NADH ratio, and initial research in this area focused on the contribution of redox control to ATP production. More recently, numerous signaling pathways that are sensitive to perturbations in NAD(+)(H) have come to the fore, as has an appreciation for the potential importance of compartmentation of NAD(+)(H) metabolism and its subsequent effects on various signaling pathways. These pathways, which include the sirtuin (SIRT) proteins SIRT1 and SIRT3, the poly(ADP-ribose) polymerase (PARP) proteins PARP1 and PARP2, and COOH-terminal binding protein (CtBP), are of particular interest because they potentially link changes in cellular redox state to both immediate, metabolic-related changes and transcriptional adaptations to exercise. In this review, we discuss what is known, and not known, about the contribution of NAD(+)(H) metabolism and these aforementioned proteins to mitochondrial adaptations to acute and chronic endurance exercise.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological / physiology*
  • Animals
  • Exercise / physiology*
  • Humans
  • Mitochondria, Muscle / metabolism
  • Mitochondria, Muscle / physiology*
  • Models, Biological
  • Muscle Contraction / physiology
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / physiology
  • NAD / metabolism
  • NAD / physiology*

Substances

  • NAD