A classic understanding of the interplay between B and T cell components of the immune system that drive autoimmunity, where B cells provide an effector function, is represented by systemic lupus erythematosus (SLE), an autoimmune condition characterised by the production of auto-antibodies. In SLE, CD4+T cells provide cognate help to self-reactive B cells, which in turn produce pathogenic auto-antibodies (1). Thus, B cells act as effectors by producing auto-antibody aided by T cell help such that B and T cell interactions are unidirectional. However, this paradigm of B and T cell interactions is challenged by new clinical data demonstrating that B cell depletion is effective for T cell mediated autoimmune diseases including type I diabetes mellitus (T1D) (2), rheumatoid arthritis (3), and multiple sclerosis (4). These clinical data indicate a model whereby B cells can influence the developing autoimmune T cell response, and therefore act as effectors, in ways that extend beyond the production of autoantibody (5). In this review by largely focusing on type I diabetes we will develop a hypothesis that bi-directional B and T interactions control the course of autoimmunity.