In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function

PLoS One. 2012;7(3):e33057. doi: 10.1371/journal.pone.0033057. Epub 2012 Mar 13.

Abstract

Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3(rd), 4(th) and 5(th) week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Basal Ganglia / drug effects*
  • Basal Ganglia / growth & development
  • Basal Ganglia / metabolism*
  • Blotting, Western
  • Caspases / metabolism
  • Dopamine and cAMP-Regulated Phosphoprotein 32 / metabolism
  • Environmental Exposure*
  • Gene Expression Regulation, Developmental / drug effects*
  • MAP Kinase Signaling System / drug effects
  • Manganese / toxicity*
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / metabolism
  • Psychomotor Performance / drug effects*
  • Rats
  • Reactive Oxygen Species / metabolism
  • Spectrophotometry, Atomic

Substances

  • Dopamine and cAMP-Regulated Phosphoprotein 32
  • Reactive Oxygen Species
  • Manganese
  • Proto-Oncogene Proteins c-akt
  • Caspases