DNA barcoding, using a short gene sequence from a standardized region of the genome, is a species identification tool which would not only aid species discovery but would also have applications ranging from large-scale biodiversity surveys through to identification of a single fragment of material in forensic contexts. To fulfill this vision a universal, relatively cheap, scalable system needs to be in place. The mitochondrial locus being used for many animal groups and algae is not suitable for use in land plants, and an appropriate alternative is needed.Progress has been made in the selection of two alternative regions for plant DNA barcoding. There are however many challenges in finding a solution that fulfills all the requirements of a successful, universally applicable barcode, and in the short term a pragmatic solution that achieves as much as possible and has payoffs in most areas has been chosen. Research continues in areas ranging from the technicalities of sequencing the regions to data analysis and the potential improvements that may result from the developing technology and data analysis systems.The ultimate success of DNA barcoding as a plant identification tool for all occasions depends on the building of a reference database and it fulfilling the requirements of potential users such that they are able to achieve valid results through its use, that would be more time consuming and costly, and less reliable using other techniques.